
Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

21

Project 1 - LED Flasher
In this project we are going to repeat what we did in
setting up and testing the Arduino, that is to blink an
LED. However, this time we are going to use one of
the LEDʼs in the kit and you will also learn about some
electronics and coding in C along the way.

What you will need

Breadboard

Red LED

150Ω Resistor

Jumper Wires

Connect it up

Now, first make sure that your Arduino is powered off.
You can do this either by unplugging the USB cable or
by taking out the Power Selector Jumper on the
Arduino board. Then connect everything up like this :-

It doesnʼt matter if you use different coloured wires or
use different holes on the breadboard as long as the
components and wires are connected in the same
order as the picture. Be careful when insterting
components into the Breadboard. The Breadboard is
brand new and the grips in the holes will be stiff to
begin with. Failure to insert components carefully
could result in damage.

Make sure that your LED is connected the right way
with the longer leg connected to Digital Pin 10. The
long led is the Anode of the LED and always must go
to the +5v supply (in this case coming out of Digital
Pin 10) and the short leg is the Cathode and must go
to Gnd (Ground).

When you are happy that everything is connected up
correctly, power up your Arduino and connect the USB
cable.

Enter the code

Now, open up the Arduino IDE and type in the
following code :-

Now press the Verify/Compile button at the top of the
IDE to make sure there are no errors in your code. If
this is successful you can now click the Upload button
to upload the code to your Arduino.

If you have done everything right you should now see
the Red LED on the breadboard flashing on and off
every second.

Now letʼs take a look at the code and the hardware
and find out how they both work.

// Project 1 - LED Flasher

int ledPin = 10;

void setup() {
! pinMode(ledPin, OUTPUT);
}

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(1000);
! digitalWrite(ledPin, LOW);
! delay(1000);
}

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

22

Project 1 - Code Overview
// Project 1 - LED Flasher

int ledPin = 10;

void setup() {
! pinMode(ledPin, OUTPUT);
}

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(1000);
! digitalWrite(ledPin, LOW);
! delay(1000);
}

So letʼs take a look at the code for this project. Our
first line is

// Project 1 - LED Flasher

This is simply a comment in your code and is ignored
by the compiler (the part of the IDE that turns your
code into instructions the Arduino can understand
before uploading it). Any text entered behind a //
command will be ignored by the compiler and is simply
there for you, or anyone else that reads your code.
Comments are essential in your code to help you
understand what is going on and how your code
works. Comments can also be put after commands as
in the next line of the program.

Later on as your projects get more complex and your
code expands into hundreds or maybe thousands of
lines, comments will be vital in making it easy for you
to see how it works. You may come up with an
amazing piece of code, but if you go back and look at
that code days, weeks or months alter, you may forget
how it all works. Comments will help you understand it
easily. Also, if your code is meant to be seen by other
people (and as the whole ethos of the Arduino, and
indeed the whole Open Source community is to share
code and schematics. We hope when you start
making your own cool stuff with the Arduino you will be
willing to share it with the world) then comments will
enable that person to understand what is going on in
your code.

You can also put comments into a block statement by
using the /* and */ commands. E.g.

/* All of the text within
the slash and the asterisks
is a comment and will be
ignored by the compiler */

The IDE will automatically turn the colour of any
commented text to grey.

The next line of the program is

int ledPin = 10;

This is what is know as a variable. A variable is a
place to store data. In this case you are setting up a
variable of type int or integer. An integer is a number
within the range of -32,768 to 32,767. Next you have
assigned that integer the name of ledPin and have
given it a value of 10. We didnʼt have to call it ledPin,
we could have called it anything we wanted to. But, as
we want our variable name to be descriptive we call it
ledPin to show that the use of this variable is to set
which pin on the Arduino we are going to use to
connect our LED. In this case we are using Digital Pin
10. At the end of this statement is a semi-colon. This is
a symbol to tell the compiler that this statement is now
complete.

Although we can call our variables anything we want,
every variable name in C must start with a letter, the
rest of the name can consist of letters, numbers and
underscore characters. C recognises upper and lower
case characters as being different. Finally, you cannot
use any of C's keywords like main, while, switch etc as
variable names. Keywords are constants, variables
and function names that are defined as part of the
Arduino language. Donʼt use a variable name that is
the same as a keyword. All keywords within the sketch
will appear in red.

So, you have set up an area in memory to store a
number of type integer and have stored in that area
the number 10. Imagine a variable as a small box
where you can keep things. A variable is called a
variable because you can change it. Later on we will
carryout mathematical calculations on variables to
make our program do more advanced stuff.

Next we have our setup() function

void setup() {
! pinMode(ledPin, OUTPUT);
}

An Arduino sketch must have a setup() and loop()
function otherwise it will not work. The setup() function
is run once and once only at the start of the program
and is where you will issue general instructions to
prepare the program before the main loop runs, such
as setting up pin modes, setting serial baud rates, etc.

Basically a function is a block of code assembled into
one convenient block. For example, if we created our
own function to carry out a whole series of
complicated mathematics that had many lines of code,
we could run that code as many times as we liked
simply by calling the function name instead of writing

http://www.arduino.cc/en/Reference/Keywords
http://www.arduino.cc/en/Reference/Keywords

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

23

out the code again each time. Later on we will go into
functions in more detail when we start to create our
own.
In the case of our program the setup() function only
has one statement to carry out. The function starts
with

void setup()

and here we are telling the compiler that our function
is called setup, that it returns no data (void) and that
we pass no parameters to it (empty parenthesis). If
our function returned an integer value and we also had
integer values to pass to it (e.g. for the function to
process) then it would look something like this

int myFunc(int x, int y)

In this case we have created a function (or a block of
code) called myFunc. This function has been passed
two integers called X and Y. Once the function has
finished it will then return an integer value to the point
after where our function was called in the program
(hence int before the function name).

All of the code within the function is contained within
the curly braces. A { symbol starts the block of code
and a } symbol ends the block. Anything in between
those two symbols is code that belongs to the
function.

We will go into greater detail about functions later on
so donʼt worry about them for now. All you need to
know is that in this program, we have two functions,
the first function is called setup and itʼs purpose is to
setup anything necessary for our program to work
before the main program loop runs.

void setup() {
! pinMode(ledPin, OUTPUT);
}

Our setup function only has one statement and that is
pinMode. Here we are telling the Arduino that we want
to set the mode of one of our digital pins to be Output
mode, rather than Input. Within the parenthesis we put
the pin number and the mode (OUTPUT or INPUT).
Our pin number is ledPin, which has been previously
set to the value 10 in our program. Therefore, this
statement is simply telling the Arduino that the Digital
Pin 10 is to be set to OUTPUT mode.

As the setup() function runs only once, we now move
onto the main function loop.

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(1000);
! digitalWrite(ledPin, LOW);
! delay(1000);
}

The loop() function is the main program function and
runs continuously as long as our Arduino is turned on.
Every statement within the loop() function (within the
curly braces) is carried out, one by one, step by step,
until the bottom of the function is reached, then the
loop starts again at the top of the function, and so on
forever or until you turn the Arduino off or press the
Reset switch.

In this project we want the LED to turn on, stay on for
one second, turn off and remain off for one second,
and then repeat. Therefore, the commands to tell the
Arduino to do that are contained within the loop()
function as we wish them to repeat over and over.

The first statement is

digitalWrite(ledPin, HIGH);

and this writes a HIGH or a LOW value to the digital
pin within the statement (in this case ledPin, which is
Digital Pin 10). When you set a digital pin to HIGH you
are sending out 5 volts to that pin. When you set it to
LOW the pin becomes 0 volts, or Ground.

This statement therefore sends out 5v to digital pin 10
and turns the LED on.

After that is

delay(1000);

and this statement simply tells the Arduino to wait for
1000 milliseconds (to 1 second as there are 1000
milliseconds in a second) before carrying out the next
statement which is

digitalWrite(ledPin, LOW);

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

24

which will turn off the power going to digital pin 10 and
therefore turn the LED off. There is then another delay
statement for another 1000 milliseconds and then the
function ends. However, as this is our main loop()
function, the function will now start again at the
beginning. By following the program structure step by
step again we can see that it is very simple.

// Project 1 - LED Flasher

int ledPin = 10;

void setup() {
! pinMode(ledPin, OUTPUT);
}

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(1000);
! digitalWrite(ledPin, LOW);
! delay(1000);
}

We start off by assigning a variable called ledPin,
giving that variable a value of 10.

Then we move onto the setup() function where we
simply set the mode for digital pin 10 as an output.

In the main program loop we set Digital Pin 10 to high,
sending out 5v. Then we wait for a second and then
turn off the 5v to Pin 10, before waiting another
second. The loop then starts again at the beginning
and the LED will therefore turn on and off continuously
for as long as the Arduino has power.

Now that you know this you can modify the code to
turn the LED on for a different period of time and also
turn it off for a different time period.

For example, if we wanted the LED to stay on for 2
seconds, then go off for half a second we could do
this:-

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(2000);
! digitalWrite(ledPin, LOW);
! delay(500);
}

or maybe you would like the LED to stay off for 5
seconds and then flash briefly (250ms), like the LED
indicator on a car alarm then you could do this:-

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(250);
! digitalWrite(ledPin, LOW);
! delay(5000);
}

or make the LED flash on and off very fast

void loop() {
! digitalWrite(ledPin, HIGH);
! delay(50);
! digitalWrite(ledPin, LOW);
! delay(50);
}

By varying the on and off times of the LED you create
any effect you want. Well, within the bounds of a
single LED going on and off that is.

Before we move onto something a little more exciting
letʼs take a look at the hardware and see how it works.

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

25

Project 1 - Hardware Overview
The hardware used for this project was :-

Breadboard

Red LED

150Ω Resistor

Jumper Wires

The breadboard is a reusable solderless device used
generally to prototype an electronic circuit or for
experimenting with circuit designs. The board consists
of a series of holes in a grid and underneath the board
these holes are connected by a strip of conductive
metal. The way those strips are laid out is typically
something like this:-

The strips along the top and bottom run parallel to the
board and are design to carry your power rail and your
ground rail. The components in the middle of the
board can then conveniently connect to either 5v (or
whatever voltage you are using) and Ground. Some
breadboards have a red and a black line running
parallel to these holes to show which is power (Red)
and which is Ground (Black). On larger breadboards
the power rail sometimes has a split, indicated by a
break in the red line. This is in case you want different
voltages to go to different parts of your board. If you
are using just one voltage a short piece of jumper wire
can be placed across this gap to make sure that the
same voltage is applied along the whole length of the
rail

The strips in the centre run at 90 degrees to the power
and ground rails in short lengths and there is a gap in
the middle to allow you to put Integrated Circuits
across the gap and
have each pin of the
chip go to a different
s e t o f h o l e s a n d
therefore a different
rail.

The next component we have is a Resistor. A resistor
is a device designed to cause ʻresistanceʼ to an
electric current and therefore cause a drop in voltage
across itʼs terminals. If you imagine a resistor to be
like a water pipe that is a lot thinner than the pipe
connected to it. As the water (the electric current)
comes into the resistor, the pipe gets thinner and the
current coming out of the other end is therefore
reduced. We use resistors to decrease voltage or
current to other devices. The value of resistance is
known as an Ohm and itʼs symbol is a greek Omega
symbol Ω.

In this case Digital Pin 10 is outputting 5 volts DC at
(according to the Atmega datasheet) 40mA (milliamps)
and our LEDʼs require (according to their datasheet) a
voltage of 2v and a current of 20mA. We therefore
need to put in a resistor that will reduce the 5v to 2v
and the current from 40mA to 20mA if we want to
display the LED at itʼs maximum brightness. If we want
the LED to be dimmer we could use a higher value of
resistance.

To work out what resistor we need to do this we use
what is called Ohmʼs law which is I = V/R where I is
current, V is voltage and R is resistance. So to work
out the resistance we arrange the formula to be R = V/
I which is R = 3/0.02 which is 150 Ohms. V is 3
because we need the Voltage Drop, which is the
supply voltage (5v) minus the Forward Voltage (2v) of
the LED (found in the LED datasheet) which is 3v. We
therefore need to find a 150Ω resistor. So how do we
do that?

A resistor is too small to put writing onto that could be
readable by most people so instead resistors use a
colour code. Around the resistor you will typically find
4 coloured bands and by using the colour code in the
chart on the next page you can find out the value of a
resistor or what colour codes a particular resistance
will be.

WARNING:
Always put a resistor (commonly known as a current
limiting resistor) in series with an LED. If you fail to
do this you will supply too much current to the LED
and it could blow or damage your circuit.

http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Ohm%2527s_law
http://en.wikipedia.org/wiki/Ohm%2527s_law

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

26

We need a 150Ω resistor, so if we look at the colour
table we see that we need 1 in the first band, which is
Brown, followed by a 5 in the next band which is
Green and we then need to multiply this by 101 (in
other words add 1 zero) which is Brown in the 3rd
band. The final band is irrelevant for our purposes as
this is the tolerance. Our resistor has a gold band and
therefore has a tolerance of ±5% which means the
actual value of the resistor can vary between 142.5Ω
and 157.5Ω. We therefore need a resistor with a
Brown, Green, Brown, Gold colour band combination
which looks like this:-

If we needed a 1K (or 1 kilo-ohm)
resistor we would need a Brown, Black,
Red combination (1, 0, +2 zeros). If we
needed a 570K resistor the colours
would be Green, Violet and Yellow.

In the same way, if you found a resistor and wanted to
know what value it is you would do the same in

reverse. So if you found this resistor
 and wanted to find out what value it
was so you could store it away in
your nicely labelled resistor storage
box, we could look at the table to
see it has a value of 220Ω.

Our final component is an LED (Iʼm sure you can
figure out what the jumper wires do for yourself),
which stands for Light Emitting Diode. A Diode is a
device that permits current to flow in only one
direction. So, it is just like a valve in a water system,
but in this case it is letting electrical current to go in
one direction, but if the current tried to reverse and go
back in the opposite direction the diode would stop it
from doing so. Diodes can be useful to prevent
someone from accidently connecting the Power and
Ground to the wrong terminals in a circuit and
damaging the components.

An LED is the same thing, but it also emits light. LEDʼs
come in all kinds of different colours and brightnesses
and can also emit light in the ultraviolet and infrared
part of the spectrum (like in the LEDʼs in your TV
remote control).

If you look carefully at the LED you will notice two
things. One is that the legs are of different lengths and
also that on one side of the LED, instead of it being
cylindrical, it is flattened. These are indicators to show
you which leg is the Anode (Positive) and which is the
Cathode (Negative). The longer leg gets connected to
the Positive Supply (3.3v) and the leg with the
flattened side goes to Ground.

Colour 1st Band 2nd Band 3rd Band
(multiplier)

4th Band
(tolerance)

Black 0 0 x100

Brown 1 1 x101 ±1%

Red 2 2 x102 ±2%

Orange 3 3 x103

Yellow 4 4 x104

Green 5 5 x105 ±0.5%

Blue 6 6 x106 ±0.25%

Violet 7 7 x107 ±0.1%

Grey 8 8 x108 ±0.05%

White 9 9 x109

Gold x10-1 ±5%

Silver x10-2 ±10%

None ±20%

http://en.wikipedia.org/wiki/Diode
http://en.wikipedia.org/wiki/Diode
http://en.wikipedia.org/wiki/Light-emitting_diode
http://en.wikipedia.org/wiki/Light-emitting_diode

Earthshine Design Arduino Starters Kit Manual - A Complete Beginners Guide to the Arduino

27

If you connect the LED the wrong way, it will not
damage it (unless you put very high currents through
it) and indeed you can make use of that ʻfeatureʼ as
we will see later on.

It is essential that you
always put a resistor in
series with the LED to
ensure that the correct
current gets to the LED.
You can permanently
damage the LED if you
fail to do this.

As well as single colour
resistors you can also
obtain bi-colour and tri-
colour LEDʼs. These will have several legs coming out
of them with one of them being common (i.e. Common
anode or common cathode).

Supplied with your kit is an RGB LED, which is 3
LEDʼs in a single package. An RGB LED has a Red,
Green and a Blue (hence RGB) LED in one package.
The LED has 4 legs, one will be a common anode or
cathode, common to all 3 LEDʼs and the other 3 will
then go to the anode or cathode of the individual Red,
Green and Blue LEDʼs. By adjusting the brightness
values of the R, G and B channels of the RGB LED
you can get any colour you want. The same effect can
be obtained if you used 3 separate red, green and
blue LEDʼs.

Now that you know how the components work and
how the code in this project works, letʼs try something
a bit more interesting.

